Author Affiliations
Abstract
1 Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
3 Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511, USA
The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during the second pulse irradiation on the crater induced by the first pulse, the expansion of the plasma and shockwave is enhanced in the longitudinal direction. The plasma model and Fresnel diffraction theory are combined to calculate the laser intensity distribution by considering the change in surface morphology and transient material properties. The theoretical results show that after the free electron density induced by the rising edge of the pulse reaches the critical density, the originally transparent surface is transformed into a transient high-reflectivity surface (metallic state). Thus, the crater with a concave-lens-like morphology can tremendously reflect and refocus the latter part of the laser pulse, leading to a strong laser field with an intensity even higher than the incident intensity. This strong refocused laser pulse results in a stronger laser-induced air breakdown and enhances the subsequent expansion of the plasma and shockwave. In addition, similar shadowgraphs are also recorded in the single-pulse ablation of a concave microlens, providing experimental evidence for the enhancement mechanism.
(320.7100) Ultrafast measurements (140.3390) Laser materials processing (140.3440) Laser-induced breakdown. 
Photonics Research
2017, 5(5): 05000488
Author Affiliations
Abstract
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
An interesting transition between low spatial frequency laser-induced periodic surface structure (LIPSS) and high spatial frequency LIPSS (HSFL) on the surface of nickel is revealed by changing the scanning speed and the laser fluence. The experimental results show the proportion of HSFL area in the overall LIPSS (i.e., K) presents a quasi-parabola function trend with the polarization orientation under a femtosecond (fs) laser single-pulse train. Moreover, an obvious fluctuation dependence of K on the pulse delay is observed under a fs laser dual-pulse train. The peak value of the fluctuation is found to be determined by the polarization orientation of the dual-pulse train.
220.4241 Nanostructure fabrication 320.2250 Femtosecond phenomena 260.5430 Polarization 320.5540 Pulse shaping 
Chinese Optics Letters
2015, 13(6): 062201
Author Affiliations
Abstract
This study proposes a new hybrid Mach-Zehnder interferometric (MZI) sensor based on two core-offset attenuators and an abrupt taper in a single-mode fiber fabricated by a fiber-taper machine and electric arc discharge. When the distance between the two core-offset attenuators is stretched to 4500 mm, significant interference signals are detected with a prominent attenuation peak of ~28 dB. The proposed MZI can be used to measure temperature due to its low refractive index (RI) and strain cross-sensitivity. The temperature sensitivity is 34.95+(-)0.04 and 106.70+(-)0.04 pm/oC in the temperature ranges of 14-250 and 250-1000 oC, respectively.
060.2280 Fiber design and fabrication 060.2370 Fiber optics sensors 
Chinese Optics Letters
2014, 12(7): 070602

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!